

Post-processing contamination chemical mitigation strategies to control PEDV in feed and feed ingredients

Courtesy of Cassandra Jones, Kansas State University

Objective:

Evaluate the effectiveness of various chemical mitigation strategies on post-processing contamination of PEDV in feed and feed components.

Industry Summary:

Post-processing contamination of PEDv in feed and feed ingredients is a significant concern to the swine industry. Irradiation and thermal processing have both been hypothesized as possible mitigants of the virus, but both are point-in-time solutions that do not provide residual benefits to prevent potential recontamination or cross-contamination within manufacturing, transportation, or storage. This study aimed to find a possible mitigation strategy to help minimize the threat of recontamination in feed and feed ingredients. The results suggested that feed and/or feed ingredients can be treated with different chemical treatments as a means to mitigate PEDv contamination, with medium chain fatty acids, essential oils, and formaldehyde being particularly effective. Importantly, the success of various chemical mitigants was dependent upon matrix, and the PEDv stability over time was also matrix-dependent, and more stable in meat and bone meal and spray-dried animal plasma compared to blood meal or a complete swine diet. This research helps provide potential mitigation solutions that can mitigate PEDv infectivity when transmitted by feed, and thereby ultimately lessen PEDv associated losses to the swine industry.

Table 1. Treatme	ent main effec	t for chemic	al means for	chemically ti	reated PEDv in	noculated			reatment main feed matrices		ed matrix mea	ans for chemical	lly treated l	PEDv
Item	Control	Organic acids	Sodium bisulfate	Sodium	Termin-8	SEM	<i>P</i> =	Item	Swine diet	Blood meal	Meat/bone meal	Spray dried animal plasma	SEM	<i>P</i> =
CT value 2	29.9 ^d	30.4°	29.7 ^d	29.3°	32.5*	0.08	< 0.0001	CT value 2	32.0 ^b	32.9*	28.1 ^d	29.2°	0.06	< 0.0001
¹ A total of 582 sa ² Cycle time requi material present.		he genetic ma			neans less gene	tic		¹ A total of 582 samples were used for the analysis. ² Cycle time required to detect the genetic material. A higher CT value means less genetic material present.						

matrices

Meat/bone meal

Blood meal Spray dried animal plasma

Item Diet

bede Means within a row lacking a common superscript differ.

Table 3. Treatment main effects for day means for chemically treated PEDv inoculated feed matrices $^{\rm 1}$

Item	0	1	3	7	14	21	42	SEM	P =
CT value ²	29.0 ^e	28.8 ^e	29.8 ^d	30.6 ^e	31.1 ^b	32.1ª	32.3ª	0.08	< 0.0001

² Cycle time required to detect the genetic material. A higher CT value means less genetic

material present. abede Means within a row lacking a common superscript differ.

Table 6. Treatment × day interaction for chemically treated PEDv inoculated feed matrices

Item	0	1	3	7	14	21	42	SEM	P =
Control	28.4 st	28.3 st	30.0 ^{opq}	30.0°P	30.5 ^m	31.2 ^{hijk}	31.8 ^{fgh}	0.22	< 0.0001
Termin-8	30.6 ^{im}	31.9efg	31.5 ^{ghijk}	32.5bcde	32.7bc	34.1ª	34.2ª		
Sodium bisulfate	28.3 st	28.0 ^{stu}	29.2°pq	29.8 ^{no}	29.8 ^{nop}	31.4 ^{ghijk}	31.6fghaj		
Sodium chlorate	27.8 ^m	27.1 ^x	28.5 ^{rs}	29.2 ^{opq}	29.7ºp	31.2 ^{jk}	31.2 ^{nk}		
Organic acids	29.2 ^{pq}	29.1 ^{qr}	29.7 ^{sop}	31.0 ^{klm}	31.0 ^{klm}	31.7 ^{fghij}	31.4 ^{ghijk}		

¹A total of 582 samples were used for the analysis.

30.1th

26.5

30.3%

abed Means within a row lacking a common superscript differ.

Table 5. Feed matrix × day interaction for chemically treated PEDv inoculated feed

30.1th

26.1^p 30.4^{fg}

Table 7. Treatment × feed matrix interaction for chemically treated PEDv inoculated feed

27.7

31.6*

29.4%

Day

32.6^{cd}

28.5° 32.2^d 32.0

29.0^{nm} 34.2^b 33.9

29.3^{#kl}

35.64

29.4%

35.94

29.6

Item	Diet	Meat/ bone meal	Blood meal	Spray dried animal plasma	SEM	<i>P</i> =
Control	30.7 ^f	27.5 ^m	33.42°	28.1 ^{3kl}	0.17	< 0.0001
Termin-8	32.2 ^d	29.3 ^h	34.3 ^b	34.1 ^b		
Sodium	30.2#	27.9 ^{lm}	32.3 ^d	28.6*		
bisulfate						
Sodium	29.6 ^h	27.0 ⁿ	32.4 ^d	28.0klm		
chlorate						
Organic acids	31.5°	28.5*	33.5°	28.2 ^{#4}		

bedefghijklmm Means within a row lacking a common superscript differ.

¹A total of 582 samples were used for the analysis.

abcdefghijklmnopqrstuv Means within a row lacking a common superscript differ.

Editor's comments: Since feed can be a source of transmission for farms, this evaluation of feed components and treatments is a needed follow-up to epidemiological investigations and bioassay studies. It identifies a formaldehyde product as having the most reduction in detectable viral RNA in the sample. The study also shows some data in Table 5 which provides plausibility to viral particles remaining infectious in spray-dried porcine plasma products longer than whole feed as was seen in Canadian outbreak investigation bioassays. Given spray-dried plasma's ability to keep viral particles intact over more time than in other feed components, another notable observation of the study is in Table 7 showing the formaldehyde product's effectiveness at reducing detectable RNA particles and perhaps infectivity in spray-dried plasma compared to other chemical treatments.

Dr. Jones' research updates and other NPB research updates can be found at http://www.pork.org/pork-checkoff-research/pedv/research/

