Summary: A putative PCV3-associated disease in piglets from Southern Brazil
Franciéli Adriane Molossi1, Bruno Albuquerque de Almeida1, Bianca Santana de Cecco1, Mariana Soares da Silva1, Ana Cristina Sbaraini Môsena1, Luciano Brandalise1, Gustavo Manoel Rigueira Simão2, Cláudio Wageck Canal2, Fabio Vanucci2, Saulo Petinatti Pavarini2 & David Dreimeier1

1Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Brazil; 2Agroceres Pic, Brazil; 1University of Minnesota Veterinary Diagnostic Laboratory, USA

Key Points
- Piglets presenting with large caudally rotated ears, weakness, and dyspnea were assessed.
- The main microscopy finding was multisystemic vasculitis and viral replication was confirmed in these lesions through in situ hybridization.
- Seventeen cases were PCR positive for PCV3 and phylogenetic analysis classified five PCV3 sequences in the PCV3a clade.

Results:
A total of 48 piglets from 16 different sows and five different farms from the largest pig producer state in Brazil (Santa Catarina) were submitted. The farm managers have reported the birth of piglets with large and caudally rotated ears (“Dumbo-like piglets”, Figure 1) on an average of 4.8 pigs per litter, weakness, and in most cases, dyspnea. Most piglets died 1–5 days after birth. At post-mortem examination, the lungs did not collapse due to marked interlobular edema. Microscopically, the main feature was multisystemic vasculitis characterized by lymphocytes and plasma cells infiltrating and disrupting the wall of vessels, lymphohistiocytic interstitial pneumonia, myocarditis, and encephalitis.

A total of 17 out of 48 samples tested positive for PCV3. Only case 24 was positive for PCV3 but did not present microscopic lesions. All samples tested negative for PCV1; PCV2; PPV 1, 2, 5, and 6; APPV; PRRSV; and OvHV-2. PCV3 capsid gene alignment showed high nucleotide identity between all the sequences analyzed (97–99%). The sequences from this study shared more than 99% identity among them.

Discussion:
The diagnosis of PCV3-associated clinical disease in neonatal piglets was based on the molecular findings in association with the detection of PCV3 mRNA in microscopic lesions. PCV3 genetic material was detected through PCR in healthy piglet tissues in other studies, and was also evidenced here in the case that was positive for PCV3, but did not present microscopic lesions. Interstitial lymphohistiocytic pneumonia was a constant pathological finding in the analyzed piglets, and through ISH it was possible to show the viral replication. This lesion is not commonly described in cases of PCV3 infection, particularly in perinatal piglets. Interstitial pneumonia is a common finding in viral infections of the inferior respiratory tract. However, other viral pneumonia agents were ruled out by PCR. One of the clinical signs that caught the attention of the producers was large caudally rotated ears in the affected pigs. This finding may resemble piglets born of large litters, with intrauterine growth retardation. However, in our cases, the litters were in all sizes (small, medium, and large), and among the piglets from the same litter, size and weight were homogenous. The ear malformation was a consistent feature observed in piglets in our study, and some of them were negative in PCV3 PCR results. The authors hypothesized that this finding may be related to the gestation phase when the viremia occurred.

The full paper can be found at: https://link.springer.com/article/10.1007%2Fs42770-021-00644-7